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Energy exchange dynamics of the discrete nonlinear Schdinger equation lattice
and intrinsic formation of strongly localized states
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We study the dynamics of excitation energy transfer along a lattice chain modeled by the discrete nonlinear
Schralinger (DNLS) equation. We prove that a segment carrying resonant motion can be decoupled from the
remainder of the chain supporting quasiperiodic dynamics. The resonant segment from the extended chain is
taken to be a four-site element, viz., a tetramer. First, we focus interest on the energy exchange dynamics along
the tetramer viewed as two weakly coupled DNLS dimers. Hamiltonian methods are used to investigate the
phase-space dynamics. We pay special attention to the role of the diffusion of the action variables inside
resonance layers for the energy migration. When distributing the energy initially equally between the two
dimers one observes a directed irreversible flow of energy from one dimer into the other assisted by action
diffusion. Eventually on one dimer a stable self-trapped excitation of large amplitude forms at a single site
while the other dimer exhibits equal energy partition over its two sites. Finally, we study the formation of
localized structure on an extended DNLS lattice chain. In particular we explore the stability of the so-called
even-parity and odd-parity localized modes, respectively, and explain their different stability properties by
means of phase-space dynamics. The global instability of the even-parity mode is shown. For the excited
even-parity mode a symmetry-breaking perturbation of the pattern leads to an intrinsic collapse of the even-
parity mode to the odd-parity one. The latter remains stable with respect to symmetry-breaking perturbations.
In this way we demonstrate that the favored stable localized states for the DNLS lattice chain correspond to
one-site localized excitationfS1063-651%97)09108-3

PACS numbg(s): 63.20.Pw, 03.40.Kf, 63.20.Ry

I. INTRODUCTION nately, there are only a few examples of exactly solvable
discrete lattices known, such as the Toda latfi€eand the

In this paper we study the energy transfer on a nonlineaAblowitz-Ladik lattice [8], and most nonlinear lattice sys-
one-dimensional lattice described by the discrete nonlineaiems are nonintegrable. In fact, numerical studies of the dy-
Schralinger (DNLS) equation namics of the discrete version of the NLS equation in the
form of the DNLS equatioril) exhibit nonintegrability(see,
e.g.,[9,10). Hence, in this case the discreteness not only
breaks the continuous translational symmetry, but it destroys
at the same time the integrability. The question is then: What
where thec,, are complex amplitudes at site vy is the local becomes of the exact soliton solutions of the integrable NLS
nonlinearity parameter, and is the dispersion parameter equation under the influence of discreteness effects? For the
determining the linear coupling between the sites. EquatiodNLS equation the existence of a localized state with fre-
(1) is also known as the discrete self-trappii@ST) system quency lying below the linear phonon band was established
and presents a set of coupled nonlinear classical oscillatorgl1,12. This solitarylike state reduces to a one-soliton solu-
introduced by Eilbeck, Lomdahl, and Scftf as a model to tion in the continuum NLS equation. However, in the DNLS
describe the nonlinear vibrational dynamics in small poly-equation a moving localized state experiences dispersion and
atomic aggregates. The DST system can also be applied ®ventually decayf10,11. Nevertheless, the lack of integra-
model the self-trapping phenomena in chemical, condenselility in the DNLS equation does not necessarily lead to the
matter, and optical systenp]. Another motivation for DST absence ofstanding localized states at all. It is rather so that
studies was to investigate the self-trapping of vibrational enlarge amplitude solitarylike standing excitations in noninte-
ergy in larger systems modeling globular protein chains ograble systems appear as WelB] and modulational insta-

dcn 2
|W:')’|Cn| ChtV(Chi1tCno1), (1

crystalline acetanilid¢3,4]. bility generates a possible mechanism for the intrinsic col-
Equation(1) arises furthermore as a discretization of thelapse to such very localized self-trapped stafes15.
continuum nonlinear Schdinger (NLS) equation. The latter Recently in studies of nonlinear Hamiltonian lattices there

is completely integrablgs,6] and possesses soliton solutions has arisen interest in breather solutions, which are time-
that play an important role in a large number of physical andbscillating solutions whose amplitudes decay exponentially
mathematical problems. However, the application of condin spacd16—29. The DNLS equation represents such a non-
tinuum equations disregarding the inherent discrete latticénear network that can be cast in a Hamiltonian framework.
structure of the system is often too idealized and gives apfhe Hamiltonian is determined by

propriate results only if the spatial extension of the nonlinear y

wave is much larger than the lattice spacing so that dis- _’ 4 * *

cretized equations provide suitable descriptions. Unfortu- H 2; el +V; (ot 1Cnt C+1Cn) @
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and the equations of motion are obtained throughem to a three degree of freedDOF) Hamiltonian system.
idc,/dt=dH/Jcy, . We show that for certain initial conditions the tetramer dy-

For other one-dimensional nonlinear Hamiltonian latticesnamics can be solved exactly. In Sec. IV the energy migra-
such as a chain of particles interacting through harmonic anion between the weakly coupled dimers manifested by dif-
(quartio anharmonic potentials, basically two different typesfusion of an action variable inside layers of coupled
of intrinsic localized breathing modes,(t) = ¢,cos(t) resonances in the underlying phase space is analyzed. Sec-

have been observed: These are the so-called even-parity afign V 1 devoted to an investigation of the stability issue of

odd-parity modes, respectively. The odd-parity mode wadWo kinds of localized DNLS modes, namely, the odd-parity

proposed by Sievers and Takefi]. Its spatial amplitudes Mode and the even-parity mode. Making use of a local
4, follow the approximate excitation pattern of phase-space approach, we interpret the stability properties of
(...17! ). Theexcitation is localized on only three ad- the tetramer and trimer segments in the context of localized

| modes on segments embedded in extended chains. We dem-
Pnstrate the global instability of the even-parity mode with
fespect to symmetry-breaking perturbations. Moreover, we
show that under perturbation the even-parity mode collapses
to the odd-parity one. Finally, in Sec. VI we give a summary.

jacent lattice site§17]. The dots stand for vanishingly smal
amplitudes of the lattice oscillators apart from the three-sit
excitation peak. Page detected the even-parity mode wit
spatial pattern (..1| T ...) where effectively four sites
are involved[18]. The odd-parity mode is centered at a lat-
tice site whereas the even-parity mode is centered between

two lattice sites. It was shown that the odd-parity mode is Il. DECOUPLING OF A RESONANT SEGMENT
unstable with respect to perturbations, whereas the even- ) o .
parity mode sustains perturbatiof80]. Therefore, an inter- The aim of the present section is to show how a finite
esting question arises, namely, whether one finds these typgglmber of neighboring rotators with motion near resonances

of localized breathing modes in the DNLS equation as welC@n be decoupled from the whole DNLS lattice of weakly
and if so what stability properties do they have then? Thecoupled rotators. The perturbation method used here was in-

present paper is aimed at offering an answer to these quetrrpduced by Benettiret al. in [33,34. These authors found

tions in investigating the phase-space dynamics. or a chain of vyeakly .couplgd. rotato(a _sjmpler model than
To study the breatherlike solutions of the DNLS equationthe DNLS chain that if the initial conditions of the system

with emphasis on their formation process and stability issue&'® SUch that some of the rotators are in resonance with their
we proceed in the following way: First we use a “trunca- neighbors, then the motion of those rotators has very little

tion” argument permitting us to restrict the dynamical stud-€ffect on th? remamder of the system. In other Word_s, th?
ies to only a finite segment of thenfinitely) extended lat- short-range interactions of the resonant part are localized in
tice. The truncation is based on the assumption ofhose regions where the initial conditions are resonant,

exponential localization of the major part of the lattice en-Whereas the nonresonant interaction part is very small.
ergy on a few lattice elements. Due to the exponential dec ence all the observed dynamics have local character and in

of the excitation amplitudes with increasing distance from 3,4] some sort of Ioca] chaos as well as local ordered re-
the highly excited lattice segment those oscillators suffi-9imes were observed in the resonant regions. In the present
ciently far away from it perform only negligible small- study we deal with the case of an arbltrar_lly large Iatthe of
amplitude oscillations not contributing significantly to the '€Ngth I=n<N and perform the perturbative computations

lattice energy. Therefore, we are justified in truncating the© first order ine. ,

lattice at a certain lattice point and disregard the dynamics of N classical first-order perturbation theory one searches

all oscillators beyond that point. The appropriate length offor a canonical transformation from the original action-angle

the truncated chain depends of course on the degree of ti@riables (,6) to new ones {, #) such that the original

exponential localization. Led by the numerical findings for Hamiltonian H=Hy(J)+€H,(J,6) is transformed to a

the localized modes of earlier work®1,31,33, a truncation Hamiltonian where the angle variables have been eliminated

to a four-element segment suffices. For instance, Acevedp toO(e), i.e.,

et al. showed that the preferred stable stationary states of the

DNLS equation are supported by excitation patterns with HO(J,0)=HP(3)+e2HP(J,6). 3

energy in only a few lattice sitd81,32. They also showed

that very confined localized states virtually do not interact _— _ . .

with their adjacent sites. As we will demonstrate in the firstSlJbSt'tUt.Ing Ca=Jy eXp(-if), the DNLS system(2) is
N g rought into the form

part of the paper the four-mode approximation will give us

valuable information about what type of lasting stable local-

ized solution we can expect to find for the DNLS equation at _Y 2 M3 _

all. Local phase-space approaches were successfully applied H= 2; ot EZV; Jndn-1 €OLbn = bn—1)

to the dynamics of Fermi-Pasta-Ulam chains as well as non-

linear Klein-Gordon chains ifi22] and to weakly coupled =Ho(J)+eH1(J,0). 4

rotators in[33]. In Sec. Il we give a rigorous justification of

the truncation of a finite segment supporting periodic motionFor a perturbational treatment we consider small couplings

from the full lattice in the light of classical perturbation V, which we make explicit by introducing the parameter

theory. The remaining part of the paper is then organized a8<<e<1 in front of the coupling terms. Physically, a smell

follows. In Sec. Il we study a DNLS tetramer. Using a means, for quasiparticles along molecular chaag., in the

symmetry-reduction method, we reduce the dynamical probHolstein model a small intersite transfer matrix element.
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In the studies of molecular aggregates the insertion of spacénteresting with respect to applications, e.g., to energy trans-
molecules increases the intersite distances and lowers ther in molecular aggregates as well as to four-mode coupled
excitonic transfer matrix elemeni{see, e.g.[35,36) and  optical waveguides.
thus it is justified to regard the couplings as weak. Further- First, the tetramer can be viewed as a finite segment em-
more, for a large class of organic systems, such as formaedded in an extended chain. The tetramer study serves then
mide and dichloromethane, as well as biological macromolas a truncated four-mode description of the infinite lattice
ecules and crystalline acetanilide as a modelachelix = dynamics. In particular, there is the relation to the even-
protein the intermolecular coupling is small, typically of  parity localized mode. This strongly localized mode involves
the order of 8—14 cm' compared to the local excitation only four adjacent particlegoscillators of the chain and the
energy carried by the molecular units, which is in the ranggest of the chain is literally at rest and hence can be discarded
between 1000 and 2000 c¢rh[37]. [13]. It has been shown above rigorously that finite elements
Finally, also certain electrical lattices built up from carrying resonant motion can be decoupled from the remain-
coupled cells of nonlinear circuits can be modeled by ader of the chain. We will see that localized tetramer modes
DNLS equation[28]. Neighboring cells are bridged via se- can actually be associated with resonances. The question is
ries of linear conductances that can be assigned such that theen: What are the stable localized modes provided by the
intercell couplingV becomes small. tetramer and do they persist as strongly localized modes of
In the following we apply the Lie methogee, e.9.[38])  the extended DNLS chain?
to eliminate the angle variables at first order in perturbation Second, the four-element DNLS segméetramey is the
theory. To this end one determines a generating functioshortest segment for which the dimensionality of the phase
S=e7n of a canonical transformation such that the newspace supports the existence of a type of dynamics for which
Hamiltonian SH=exqeL,] takes the form HHH(l) the trajectories can wander freely in phase space known also
+eHP+ ... andLyf={H,f} is determined via the Pois- @S Arnold diffusion[39]. As a result of the study on the
son bracket. One obtains &, (Ho+eHy) DNL.S energ.y.exchange dynamlcs, the Arnold_d|ffu3|on is
=H0+e(L,7H0+H1)+O(e2). With the relation L,H, crucial for driving the transition of the even-parity mode to

» . ;
=—Ly,7 one arrives finally at the equatidrhon= H, for the odd-parity one to create a stable localized m@de Sec.

the unknown functiory. Using Eq.(4) one finds V).

\/— A. Coupled dimers and symmetry reduction
7(J,0)= ZVE 3, _n\]n ! sin(6,— 6,_1). (5) We write the DNLS-tetramer Hamiltonian in terms of the
n-1 complex site amplitudes as
Finally, we discuss the definition of the domains of the ca- 1 2
nonical transformatiors= €. The generating functiom is H= 3 y;l |cj|*+V(ct catchcy) +V(ckc +clc)

defined outside the resonant planeslgfJ, ;=0 and the
condition of nonresonance is  fulfilled for
|3,—J,_1|>4\eVP. We use thatl,< /P, whereP=3J,
is a conserved quantity. We call the pair of lattice sites (1,2) thiest dimer, while the

On the other hand, if on a certain segment of the lattice opair (3,4) constitutes theecond dimerSometimes we refer
rotators the nonresonance condltlons cannot be satisfied, that them also as dimer 1 and 2, respectively. The choice of
is, if [Ja—Jn_1|<4VeVP ne[N™%N?%] and different couplingsV of the transfer on the dimers respec-
1<N"*<N, then one can still perform a canonical transfor- tively between them vi&V enables us two consider different
mation$S to eliminate the angle variables on all lattice points Situations dependent on the relative ratio\ofand W. For
contained in the intervalsie[1N®—1JU[NS5+1N]. example; in the case of>W one has two weakly bound

+W(c5cytc3c,). 7

The new Hamiltonian then reads dimers. The opposite extreme case/dfV is a dimer with
one oscillator weakly attached to either site of it.
N'ES The system obtained by settingy=0 (V=0) is inte-
2 P+e2v > \Idn_1 cog6,— 6y_1) grable since it decomposes into two integrable DNLS dimers
n=N'es (one dimer and two isolated oscillatprénstead of explicitly
writing the equations of motion for the amplitudesof the
+0(€?). (6)  system, in which, besides energy conservation, the norm

P=3",|c;|? is a further conserved quantity, we first ex-
In this way one decouples a resonant segment of IengtBress the Hamiltoniaf¥) in a different form resulting from a
N=N'8S—N'® from the rest of the lattice chain and the en- symplectic transformation of the dimer amplitudes to two
ergy should stay at this truncated segment at least up to timgsmirs of canonically conjugate variablesp,(¢,) and
of order 1k. In the next section we regard the DNLS tet- (N,,8,), with n=1,2:

ramer ofN=4 as the truncated segment.
J o Nt [ bt By
cy'= Tex —i > ,

IIl. THE DNLS TETRAMER
d’n_ﬂn”

2

In the present section we study the DNLS tetramer. The n_ Nn—pn exp{i ®)

(
aim of such a study is twofold. The tetramer in itself is €2 2
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The momentum variablep; , are equal to the occupation 10 o ] '
differences between the two sites on each dimer, i.e., 08| '
pn=|c{V|2—|ci|2. The auxiliary action variabledl, are 06|

given by N,=|c{V|2+|c{V|2. Obviously, they specify the o4

amount of P contained in each of the dimers, with 02t

P=N;+N.. o 00

It is convenient to rescale the time according ¥t2: t, o2y

which is equivalent to a measurement of the energy in units
of 2V. Thereby we divide the Hamiltonia(energy~by a oal /
factor gf 2V vyielding the scaled parametesg2V=y and -1.oF ]
W/V=W. For the sake of simplicity of notation we omit the 10 08 —06 —04 —02 00 02 04 06 08 1.0
tildes henceforth. 0

The Hamiltonian(7) expressed in these new variables be- ] )
comes FIG. 1. Phase plane of a DNLS dimer ¢f=1.6 showing the

homoclinic structure. The two self-trapped states inside the separa-
H= H(1)+ Hg+ HL, (9) trix are indicated.

with the dimer parts X cog 60— 3(p1+ b2)]. (15

We simplified the notation a8,— 6 and further dropped a
Hf,’:%/[NﬁJr p2]+N2—p2 cosp, (n=1,2) (10) constant contribution from the Hamiltonian because it does
not affect the equations of motion.
The integrable equations of motion in the dimer variables
(pn=p,P,=¢) for an isolated dimer\y=0) are given by

—0.4 |-
-06 |-

and the interaction part

H=WV(N;—p1)(No+P2)cog 5 (81— B2) — 3 (b1t b2)]. b
r = — 2_n2 gj / = e —
(11 p JN“—p*©sing, ¢=vyp \/ﬁ2__p2 COsp.

A reduction of the dimensionality of the phase space corre- o
sponding to the system of Hamiltonia®) is possible by ~For Ny<l the system(16) possesses two stable elliptic
applying the symmetry-reduction meth¢@8]. Apparently, ~fixed points located atp(,#)=(0,0) and 0,¢)=(0,xm),
the interaction Hamiltonian depends on the angle variableESpectively. The corresponding symmetric and asymmetric
B, (n=1,2) only in their combinationd,— 3,. The corre- Mode patterns are symbolically expressed fag ), respec-
sponding conserved quantity related to Blesymmetry is  tively (1,]). For Ny>1 a bifurcation takes place and the
the integralP=N;+N,. We therefore perform a canonical elliptic point at the origin is converted into a hyperbolic fixed

transformation based on the generating function point. The hyperbolic point is connected to itself by a pair of
homoclinic orbits formed by its coinciding stable and un-

(16)

1 1 stable manifolds. Inside each half of the figure-eight separa-
F=5(B1= B3+ 5(B1+ B2)P, (12 trix there are elliptic fixed points located at
+_ 2_1/2 _
yielding Pe == YN°=1/y%,  ¢e=0, 17)
JE 1 JE 1 which represent stationary self-trapped states. In the upper
=Z(P+J), Ny=——==(P-J), (13 half plane the latter are assigned to the mode pattefhs

Yoy 2 Bz 2 which in the limit of Ny—o yields (].). The elliptic-type
dynamical rotations around them correspond to one-sided os-
cillations of the occupation difference, i.e.p(t)>0
[p(t)<0] in the uppelflower] part of the homoclinic struc-
ture. Finally, forNy>2 a further transition occurs where the
As a result we obtain the reduced three DOF Hamiltonianseparatrix embraces also the poipts =N,$=0. As seen
expressed in the two dimer DOB§ -1 5,$n-1and an ad-  from Eq.(17), the limitsN— o and/ory— o result in strong
ditional J-¢ oscillator describing the powefenergy ex-  self-trapping at one of the monomers, i@+ N. Figure 1
change between them shows the homoclinic structure in thre¢ phase plane.

H(P1,¢1,P2,¢2,d,0) B. Solvable configurations and nonlinear modes

:ZJ2+ Y 2, \JL(P+3)2—p? There exist special configuratioidependent on the ini-
4 2 P1 4 P1 tial conditiong for which the DNLS tetramer can be inte-

grated in closed form. Andersen and Kenk#®] presented
Y o Jip_np2_ 2 some exact analytical solutions fdi-site DNLS systems
X Cod py)+ o P2t 4(P=J)"=p3 with localized initial conditions and a class of more general
but symmetric initial conditions. We emphasize that our
X cog ¢2)+W\/[§(P+J)—p1[%(P—J)+IOz] study differs from those 0of40] since the initial conditions

COF 1 CoF 1
al—ﬁ_i(ﬂl_BZ)' 02—5—5(,31"‘32)- (14)
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leading in our cases to completely solvable tetramer configu- In

rations are not included in the discussion$40]. Moreover,
in addition to the symmetric couplings =W we cover a

more general case allowing also asymmetry in the couplings,

viz. V#W.
We prove that for the mirror symmetric initial conditions
p1(0)=—p2(0), ¢1(0)=—¢,(0), andJ(0)=0 as well as
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the case of the STC the

H=H(Y,Q;u=0) reads

Hamiltonian

W
Hm%v% 2/P7=V2cog0) + - (P-Y). (29

This Hamiltonian describes an asymmetric DNLS dimer sys-

6(0)=0, the tetramer system can be solved exactly. We retem, the solution of which can be expressed via Jacobian and

fer to these solvable cases asalvable tetramer configura-

tion (STC). The system solutions are given by those for two

isolated asymmetric dimers and p;(t)=—p,(1),
d1(t)=— (1), and N4(t)=N,(t)=N for all times. The

Weierstrassian elliptic functiorgt1-44.

In the context of the present study, which is to gain in-
sight into the features of localized DNLS modes, we focus
interest on tetramer excitations belonging to stationary

system can be solved regardless of the values for couplin§TC's. The first situation arises from an ensemble of two

strengthsv and W.

dimer modes related to the stable elliptic point at

To show the validity of the above statement regarding the p, ¢) =(0,= ) yielding the tetramer patter€t,],],T). This

STC we introduce the following symplectic change of vari-

ables induced by the generating function:

1 1
F:§(¢1+¢2)X+ §(¢1_¢2)Y, (18
relating the old and new variables as
1
X:pl+p21 CD:§(¢1+¢2)1 (19)
1
Y=p1— P2, Q:§(¢1_¢2)- (20

The Hamiltonian expressed in the new variables becomes

H= %(J2+ X2+ Y2)+{(P+J)*—(X+Y)? cog @+ Q)

+J(P=3)?>—(X-=Y)? cog®—-Q)

+V§V\/(p_y)2—(J—X)2 cog §— ). (21)

In order to show the validity of the STC we note that the

mode realizes the global minimum of the energy. Therefore,
the Hamiltonian can be used as a Lyapunov function to es-
tablish its stability. Regarding the tetramer as embedded in
an extended chain, the stability of the antiphase tetramer
configuration means that there exist no staggered localized
solutions, which is in contrast to the findings[d,12. But

of more interest are tetramer modes built up from stationary
dimer states associated with stationary solutions from the
interior of the homaoclinic structure or the hyperbolic equilib-
rium itself (see Fig. 1L With respect to such solutions we
distinguish three tetramer mode patterns that are classified
according to the superposition of their different stationary
dimer states. First, there is the amplitude patteri|df] T).

In the limit of Ny—o the mode becomes|( T) and we

call it the outer local tetramer modéOLTM). Second, we
have (1TT1) going for Ny—x to the pattern (] T.), re-
ferred to asnner local tetramer modéLTM). Finally, there
remains the case of equipartition of the tetramer energy, viz.,
the pattern {777). In the next subsection we are going to
show that a stationary STC may become unstable with re-
spect to any symmetry-breaking perturbation.

C. Symmetry-breaking perturbations and resonance layers

We show that symmetry-breaking perturbations of the

Hamiltonian(21) is invariant under simultaneous reflections STC's can lead to instability in the tetramer dynamics. As

according to
H(X,9,3,0;Y,Q)=H(—=X,—d,—J,—0;Y,Q). (22

Since the HamiltoniarH is an even function in the argu-
mentsu=(X,®,J, ) we obtain that

symmetry-breaking perturbations we define deviations from
the STC such that # 0, and they are measured by absolute
values of the two pairs of variablegX(,|®|) and (J|,|4]).

For initial conditions leading to a STC or being close to it the
motion is associated with a strong coupling resonance deter-
mined by

. oH 1
Mo-o==5g], =0 Plo=5x] =0 @ G (grrdiz= prtp-9)
- - 2
dH . 1 P+J+2p;
Ju-0== 25 =0, Olu=0=77 =0 (29 +-— cog ¢1)
u=0 u=0 4 1
™ 2_ 2
Therefore, the six-dimensional phase space Z(P+‘]) P
M=(X,9,3,0,Y,Q) spanned by the dynamical variables
decomposes intoVi= My (& M,, My qeRXT!, and 1 P—J—2p,
M, eR?XT?,  respectively. The  subspace M, - = cog ¢,)=0. (26)

=(Xo,Pq,Jg,6p) contracts to the point (0,0,0,0). The inte-

grable dynamics takes actually place on the two-dimensional

subspaceMy o=(Y,Q) e R* X T

4
=(P=3)*-p}
4
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resonance gets destroyed and the drift motion of the action
appears only for short times so that an exponential bound on
the velocity of the action diffusion resulig8]. On the other
hand, for Hamiltonians for which the convexity is not given
one finds on the resonance surface a curve whose tangent at
any point lies in the plane spanned by the resonance vector.

s 00 An action drift with velocityW along this curve suffices that
—o < the action variable) shows significant deviations from its
- ~o initial value already in time intervals of order\i/[48,49.
o0 M,..»’ ~—.— With respect to the application of the above argumenta-
- - tion to the drift of the action in the stochastled layer it is
—o3 L ; ‘ , now illustrative to inspect the matrix’H,/d12, which is
-3 -2 =1 : 2 3 given by
. . y 0 D
FIG. 2. Master separatrix in the 6 plane for the coupled dimer-
dimer dynamics ofy=1.6, P=2, andW=0.004. The initial con- 0 v Dy, (28
ditions arep; = —0.780 622 47p,=0.780 622 79¢,= ¢,=0, and D, D, vy
J=6=0.
where

Note that for any STC for which J 6)=(0,0) and
y %) —(0.0) PHo 1 picos dy)(P+J)

p1=— P2, 1= — ¢P,, the resonance conditid@6) is exactly D,= == , (29)
fulfilled. A stability analysis reveals the unstable character of dp19d 4 [L(P+7J)%2—p?]®?

the stationary pointJ, ) =(0,0) in theJ-6 plane. The sepa-

ratrix assigned to this unstable stationary point develops a PHo 1 ppcod ¢p)(P—J) (30

stochastic layer due to the nonintegrability of the coupled
system. In Fig. 2 we show the separatrix corresponding to
the resonancé26) obtained from a numerical integration of For a comparison of the stability properties of the OLTM
the weakly coupled DNLS dimer-dimer system of Eff5)  and the ILTM we recall that for both modes their two corre-
with W=0.004 projected onto th& 0 phase plane by atime- sponding dimer constituents perform oscillations in the inte-
periodic map. The integration time interval was rior of the lobes of their homoclinic structurésee Fig. L In
0=<t=<10.000 and after each time steptef50 a point was both cases the angles are locked in the intefyal) < w/2
set in theJ-0 phase plane. The separatrix exhibits a thinand likewise are the signs of the momenta fixed. Concerning
stochastic layer. Since the separatrix width determines ththe OLTM characterized byp,>0,p,<0, the matrix
maximal amount of energy to be transported from one dimep?H,/3J? is positive, while for the ILTM ofp,;<0,p,>0 it
to the other, we call th@-¢ separatrix thenaster separatrix  is not. Due to Nekhoroshev we expect for the OLTM only a
Thus perturbations of the STC are connected with dynamshort time diffusion of the actiod, whereas the ILTM may
ics inside the resonance layer and the acixperiences a maintain the resonance condition over a long time interval
drift with velocity according to resulting in pronounced action diffusion. Furthermore, from

Eq. (27) we see immediately that the drift velocifyfor an
ILTM is larger than for an OLTM.
_ \/ 1 ~ 1o The findings of the current sec_tipp lead us to draw the
W[2(P+3)=p1][2(P=J)+pa] conclusion that the dynamics for initial conditions close to
X SiM 60— (b + )] (27) the STC'’s that is manifested by near-separairt motion
may become unstable due to diffusion inside the resonance
In turn this drift in J changes the energies of the layer. On the other hand, for orbits that remain sufficiently

two dimer DOF's due to the dependenclé‘fz: 7p’i2 far from the separatrix the evolution is regular. Figure 3

+(P=3)2/4— pZ cos(h, »). Therefore, the orbits on the lo- shows the dimer occgpation differenqges,(t) as yvgll as th_e
cal dimer planes will drift away from their initial positions. power exfcfhang? vanablés(tlz for thﬁ case of t')rl"t'al and" f
The drift in the dimer DOF's initiated and forced by the NS sufficiently apart irom the unstable point o

chaotic layer diffusion of thd action reflects the features of (J,0)=(0.0). I_ndeed the traject_ories exhibi'_[ the expected
Arnold diffusion[38,45—41. regular behavior. The next section deals with the tetramer

Concerning the drift motion of action variables inside dynamics withJ-6 initial conditions contained in the sto-
resonance layers, we exploit now an argumentation 0Fhastic layer around the separatrix for which irregular motion

Nekhoroshe\[48,49,47. According to Nekhoroshev, a fast 'S found.

evolution .of the gct|on] (wnh drift velocity of the order of I\V. ENERGY EXCHANGE IN THE COUPLED

the couplingW) is possible only for resonances and takes DIMER-DIMER DYNAMICS

place only in directions determined by the resonance vectors.

If the unperturbed Hamiltonian is such that the matrix In this section we study the energy exchange dynamics
3*Hg/a1? with 1=(p,,p,,J) is positive (condition of con-  between the two dimeric subunits of the tetramer caused by
vexity), then it is guaranteed that the evolution extends in arnold diffusion. In Ref[39] we proved with the help of the
direction leading out of the resonance surface. Hence th®lelnikov method the nonintegrability of the DNLS tetramer

TPl A3(P-0) - pE”

J=—(aHY96)
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0ol T ] trapped state in the lower half planemf<0. For the second
P o7 VA A A dimer the initial condition is chosen as a point on a curve
0.5 1 encircling closely the elliptic fixed points in the upper half
0.3 plane (p,>0) inside one-half of the corresponding local
J o1 IW\MMMN\MAM}\MMMAMMN\)WWUWW figure-eight separatrix. The initial equal distribution of the
01 | ] energy among the dimers is represented inkteplane by
-03 , the hyperbolic fixed point at (0,0).
-05f 1 In the following we describe the successive stages of the
-071 ] energy exchange dynamics of the coupled dimer-dimer sys-
o 09 WWWMWWVMWWW‘ tem by focusing on the typical dynamics observed in each of
1.1 C e T the local phase spaces. We start with Jhé phase plane as
0 100 200 300 400 500 600 700 800 900 1000 the local phase space describing the povesiergy balance
t between the two dimers. The chaotic dynamics in the sto-

chastic layer around the master separatrix induces diffusive
(lowest curve and p,(t) (upper curvi and the power difference motion. Therefore,.the s_toch.asnc layer of the master separa-
J(t) (middle curve for the initial conditions of p,=—0.78, trix gwdes the action dn‘fusmn. Apparently, the larger the
p,=0.78, J=0.06, ;= b,=0, and §=0. The parameters are possibleJ=N;—N, excursion across the layer the more pro-
y=1.6 andW=0.01. The curves reveal regular dynamical behay-nounced the dynamical changes of the local amounts of the
ior. dimer powersN; and N,. When diffusing across thé-6
stochastic layer away from the initial point (0,0) into the
through the existence of chaotic dynamics supporting the@ipper(lower) half-plane ofJ>0 (J<0) the local energy of
presence of Arnold diffusion. We are interested in tetramethe first dimer increase@iminishes, while that of the sec-
excitations of equal distribution of the conserved tetrameiond dimer diminishes(increases In turn these directed
energy between both dimers, i.&l;(0)=N,(0) as well as changes in the local dimer energies are reflected on the as-
E2(0)=EJ(0). Furthermore, the amplitudes at the oppositesociated dimer phase planes by diffusive motion of the dimer
sites of the two dimers being the two inner tetramer sites argariables f,,,¢,), n=_1,2. The diffusive motion in the dimer
initially close to a stationary self-trapped state. The situatiorsubplanes initiated and forced by the chaotic diffusion in the
is described symbolically by the following stationary mode stochastic layer in thé-6 plane is characteristic for Arnold
patterns: on dimer 11T) and on dimer Z(TT). To this end diffusion [45,38§].
we concentrate on initial excitations of the dimers according In Fig. 4 we illustrate the dynamics of the energy ex-
to pi(t)=—py(t) with |p1,2(t)—pg|<1 and ¢4(t) change between the two dimers for a coupling strength
~— ¢,(t), while | ¢, At)|<1. We remark that these initial W=0.01. Projections on the individual subplanes were
conditions involve small deviations from the symmetry of achieved by a time-periodic map, that is, after a time step of
the ILTM. t=>50 the dynamical state of the subsystem was set as a point
Note that for vanishing couplingv=0 the decoupled in the corresponding plane. Figurda# shows the corre-
dimers are each for itself integrable. In particular, the sepaspondingJ-6 phase plane exhibiting a chaotic layer around
rate dimer energies are both conserved and hence a sethe destroyed separatrix in which the actibmliffuses. The
trapped state can never be left. However, when the twdime evolution of the actior)(t) is depicted in Fig. @).
dimers become coupled energy migration between them i€learly visible is the pronounced diffusive growth from
possible. There arises at least one interesting question to Pe=0 to J=0.5 taking place in the time interval of
answered namely, whether this initial excitation pattern of0<t<4800. The exclusively positivé amplitude performs
self-trapped amplitudes on the two dimers remains stabléeverlasting” small oscillations around a mean value of
under the dimer-dimer interaction or, if not, can there existJ=0.5 to be seen on the correspondih@ plane as a hori-
any localized structure on the tetramer at all? zontal motion[Fig. 4(c)]. This means that the major amount
The coupled dynamics of the three DOF Hamiltonianof power N;=5/4 is then contained in the first dimer,
dimer-dimer system evolves in the six-dimensional phasevhereas the rest of powdenergy N,=P—N;=3/4 re-
space on a five-dimensional energy manifold, which, how-mains in the second dimer. The process of directed energy
ever, as a whole, is difficult to visualize appropriately. For atransfer from dimer 1 into dimer 2 becomes transparent in
geometrical illustration of the complex diffusion process inthe p; ¢, , planes that we superimposed onto one plane in
terms of the dynamics in phase space we invoke thereforBig. 4(d). We show the initial stage of the dynamics up to a
projections on the local phase spaces attributed to each singliene of t=4000 when the energy migration takes place. In-
DOF. These three local phase spaces are the two dimer phasgestingly, the directed redistribution of major parts of the
planes parametrized in the correspondinge, variables conserved tetramer energy into one of its dimer components
(n=1,2) and theJ-6 phase plane. The local projection causes enhanced self-trapping of the energy on the corre-
method enables us to monitor the actual dynamical state afponding right monomer of the first dimer to be seen in Figs.
each subsystem. The sum of these three local pictures cod¢e) and 4f), where we plotted the dimer occupation differ-
tains the complete information about the coupled systemsnces,(t) andp,(t), respectively. While on dimel a self-
dynamics. For example, the above-described initial conditrapped state has been formed with strong localization of the
tions are manifested as follows in the local subspaces: In thiacal energy at its right dimer site, the dynamics on dimer 2
local dimer phase space of the first dimer, i.e., fhe¢, is characterized by randomization of the energy over its two
variable, the initial conditions coincide with a stationary self-monomergsee Fig. 4)]. The latter effect of energy equi-

FIG. 3. Evolution of the dimer occupation differencpg(t)
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FIG. 4. Dynamics of the energy exchange between two coupled DNLS dimers. The parameters and initial conditions are as in Fig. 1,
except for the coupling strength ¥¥=0.01.(a) The J-6 plane fort<4000. The separatrix exhibits a chaotic lay@. Time evolution of
J(t). (c) The J-6 plane fort>4000. (d) The superimposed phase planes of dimers 1 and 2, respectively <fox 8000. () Dimer
occupation difference,(t). (f) Dimer occupation differencp,(t). (g) The evolution of the dimer energie’éiz(t) illustrating the directed
flow of energy from dimer 2 into dimer Xh) The superimposed phase planes of dimers 1 and 2, respectiveliy>B800 the final stage
of the dynamics of dimer 2 takes place as chaotic motion in the stochastic layer of the separatrix, whereas for dimer 1 the elliptic equilibrium
in the lower half plane is encircled.
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partition is the result of the chaotic movement pj(t) 14T
around the value of zero due to nearby separatrix motion on 0.9t L AR
the p,-¢, phase plane. The time evolution of the dimer en- P 07 N ‘
ergiesEfl)'z(t) in Fig. 4(g) shows the migration of the energy 0.5

from the second dimer into the first dimer. In Fighgwe O3 | T

illustrate on the two superimposed dimer subplanes the final J _8'1 . i ;

stage of the dynamics fdr>4000, that is, after the energy o3l
migration from dimer 2 to dimer 1 has been finished. In Fig.

4(h) one clearly sees that the localized single-site state isp, _g7
characterized by small-amplitude oscillations around an el- —0.9
liptic fixed point in thep,-¢, subplane. -1 ‘ ‘ . ‘ ‘
We emphasize that in the final stage the dynamics in the 0 1000 2000 3000 4000 5000 6000
t

p,-&, subsystem takes place as diffusion inside a thick sto-
FIG. 5. Stability of the OLTM. The initial conditions are as in

chastic layer. The thick stochastic layers form the dominant
part of the Arnold web containing the thin layers of many Fig. 1, except for the sign change pf to 0.780 622 47 ang, to

other resonances too. As a hallmark of Arnold diffusion the_q 780 624 79. The dimer-dimer coupling is taken \a&=0.1
dynamics preferably takes place in thick stochastic layergyhich is 10 times larger than the one used for the ILTM of Fig. 4.
[45,38. In this way the thick layem,-¢, motion in the

separatrix of the unstable equilibrium is maintained and there, . ia |ocalized structure formation on the tetramer to ex-
will no pathway back leding to even the vicinity of the start- ;o qed Iattice dynamics we anticipate that the perturbed
ing point at the self-trapped state belonging to the Stable  eyen-parity mode collapses to the odd-parity mode charac-
¢1,» equilibria. Consequently, the coupled dimer-dimer mo-iyizeq by the stationary mode pattern ( {..1 . . .). This

tion will hardly return to the initial state of energy equipar- nregiction was confirmed in our numerical studies. Figure 6

tition and hence the energy transfer from one dimer into the,g\ws the evolution of the amplitude profiles for a DNLS
chain with open boundaries. We excited initially two adja-

other isirreversible In conclusion, a long-lived single-site
localized state on the first dimer is observed storing the Magant |attice sites corresponding to a very strong localized

jority of the energy in it, whereas on the second dimer theyen_parity mode. A symmetry-breaking perturbation was
remaining little energy is randomized over its two sites. imposed through small difference in the two excited ampli-

To summarize, we have seen that in the case of a weakly,qes of the order of I(P. After a short transient time of
honon emission from the excitation peak into extended

coupled dimer-dimer system the formation of a specific lo
calized mode excitation pattern with energy localization at g)4ts of the lattice one clearly sees the two-site excitation
OWattern collapsing to a single-site state representing the sta-

single site is possible. This localized state has emerged fr

a situation of initial equal energy distribution among the tWOtionary odd-parity mode.

dimer subunits with an amplitude pattern close to an inner o resylt is in qualitative agreement with the findings of
Laedke, Spatschek, and TuritsyB0] in their study of a

local tetramer mode, that i€} T1). The directed energy
migration results eventually in a single-site self-trapped statg)n| s with a tunable power nonlinearity. They showed that

on only one of the dimers according to the mode patter\qiape discrete solitons centered between two lattice sites
(1171). This long-lived and stable localized state shows the(even-parity modescollapse eventually into more stable in-

typical features of a stationary solitarylike excitation or in'trinsically localized modes. For a nonlinearity power larger
than our cubic one this final state is a time-dependent local-

trinsically localized mode.
We investigated also the dynamics corresponding to ini-

tial conditions close to the outer local tetramer mode, viz.,
(T117). It turns out that it is robust under weak symmetry-
breaking perturbations maintaining its excitation pattern. The 10

findings are summarized in Fig. 5. /

V. STABILITY PROPERTIES OF THE EVEN- AND /
ODD-PARITY LOCALIZED MODES 5 f

In this section we consider localized excitation patterns of
an extended DNLS lattice chain. When we view the tetramer
system as a four-site element embedded in a lofigénite) o \ﬁ
lattice chain we can exploit the results of the above- & | ﬁ
performed tetramer stability discussions for interpreting o E .
0 20 40 60
n

them in the context of strongly localized modes on the ex-
tended chain. In particular we see that the mirror-symmetric
FIG. 6. Amplitude profile on an extended DNLS chain illustrat-

tetramer initial conditions close to an ILTM resemble the
excitation pattern of the central four-site element for theing the intrinsic collapse of the initially excited even-parity mode to

strongly localized even-parity mode on an extended DNLShe odd-parity one. The parameters &e8 and y=V=1. The
initial difference in the amplitude of the two excited lattice sites is

chain, viz., (.. 1TT1...).
In adopting the results reported in the preceding sectiono °.
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ized mode corresponding to ascillating two-soliton state shown that perturbations of the tetramer modes exhibiting
[50]. With the present study for cubic nonlinearities we dem-self-trapped amplitudes at the two inner tetramer <itaser
onstrate that the fate of the perturbed even-parity mode is tiocal tetramer modegdead to unstable motion. The energy
collapse to astanding solitonlike state that is, however, migration along the tetramer was studied numerically. In par-
nonoscillating. Kivshar and Campbdll3] argued that the ticular, imposing perturbations on the excited inner local tet-
even-parity and odd-parity stationary DNLS modes can beamer mode, chaotic dynamics inside resonance layers was
viewed as two different states of the same localized state, bdbund and diffusion of an action variable expressing the en-
at different fixed instants in time. In more detail, while mov- ergy sharing between the dimers appeared. Due to the action
ing the localized state rigidly through the lattice it has itsdiffusion, a directed and irreversible energy flow from one
center at a certain time at a lattice sitedd-parity modg  dimer into the other takes place. As an interesting phenom-
whereas at another time it will be centered between two sitesnon one observes finally the creation of a coherent structure
(even-parity mode From a comparison of the corresponding in the form of a large-amplitude state localized at a single
mode energies one can also infer the stability properties. Theite of the tetramer. This localized state is dynamically
odd-parity mode has lower energy than the even-parity onestable. The tetramer results are applicable to the search for
Thus the latter shows an instabilif3]. We underline that localized vibrational modes in molecular tetramer studies,
our analysis goes beyond the one performefllB] because but are also of interest in nonlinear optics when arrays of
it is not restricted to a stationary analysis of DNLS modesfour coupled waveguides are considered.

Moreover, we reveal in detail thdynamicalinstability of the In the second part of the paper we focused interest on the
even-parity mode entailing an intrinsic dynamical collapse toenergy exchange dynamics along an extended DNLS chain.
the odd-parity mode. Attention was paid to the occurrence of localized stationary

Contrary to the even-parity mode, the odd-parity modemodes, that is, the odd-parity and even-parity modes, respec-
remains stable with respect to symmetry perturbations. Inively. To relate the tetramer results obtained in the first part
order to explain the stability of the odd-parity mode we canof the paper to the studies of dynamics on the extended lat-
invoke again a local phase-space picture. Since effectiveltice we used that the main excitation pattern of the even-
only three lattice oscillators are involved in its excitation parity mode on the extended lattice is localized at only four
pattern the local phase space this time belongs to the centrigttice elements and its shape resembles an inner local tet-
trimer segment truncated from the extended chain. The peramer mode. Therefore, the tetramer studies can serve as a
fect excitation pattern of the odd-parity mo(ﬁaTT) yields  four-element approximation of the extended lattice dynam-
integrable trimer motion. By means of a Poincarap it can  ics. Especially from the instability of the inner local tetramer
be shown that this stationary mode pattern is represented byode, one can predict a decay of the even-parity mode.
an elliptic fixed point on the corresponding cross sectionMoreover, the above-reported creation of the single-site lo-
Symmetry-breaking perturbations of the odd-parity modecalized tetramer state corresponds on the extended lattice to
produce a stability island of the Poincameap for which the formation of the odd-parity mode. In the numerical study
integrable quasiperiodic motion surrounds the elliptic fixedof the extended DNLS lattice we have observed indeed an
point. This offers an explanation for the robustness of thantrinsic collapse of the initially excited even-parity mode to
odd-parity mode with respect to perturbations in terms of thehe odd-parity one. Thus we have been able to demonstrate
local trimer phase-space dynamics. In summary we see th#tat the most stable localized excitation of a DNLS chain is
unlike the even-parity mode, which even under small breakprovided by a one-site breather. This result is of importance
ing of its symmetry is readily destroyed, the odd-parity modefor applications of the DNLS equation in describing arrays of
persists for a rather strong breaking of its symmetry pattermonlinear optical waveguides since it shows what type of

excitation can be stored in the array in a reliable and stable
VI. SUMMARY way. With regard to applications of DNLS modeling larger
] ~ molecular systems such as globular protein chains or crystal-
We have studied the energy transfer along a DNLS lattic§ine acetanilide, our results show that self-trapping of vibra-

ment can be decoupled from the lattice. In the first part of thepzin.

paper a four-element segment, i.e., a DNLS tetramer, was

investigated. We identified certain initial conditions for ACKNOWLEDGMENT

which the tetramer system can be solved exactly. For two
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