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Energy exchange dynamics of the discrete nonlinear Schro¨dinger equation lattice
and intrinsic formation of strongly localized states

D. Hennig
Fachbereich Physik, Freie Universita¨t Berlin, Institut für Theoretische Physik, Arnimallee 14, 14195 Berlin, Germany

~Received 6 November 1996; revised manuscript received 20 March 1997!

We study the dynamics of excitation energy transfer along a lattice chain modeled by the discrete nonlinear
Schrödinger~DNLS! equation. We prove that a segment carrying resonant motion can be decoupled from the
remainder of the chain supporting quasiperiodic dynamics. The resonant segment from the extended chain is
taken to be a four-site element, viz., a tetramer. First, we focus interest on the energy exchange dynamics along
the tetramer viewed as two weakly coupled DNLS dimers. Hamiltonian methods are used to investigate the
phase-space dynamics. We pay special attention to the role of the diffusion of the action variables inside
resonance layers for the energy migration. When distributing the energy initially equally between the two
dimers one observes a directed irreversible flow of energy from one dimer into the other assisted by action
diffusion. Eventually on one dimer a stable self-trapped excitation of large amplitude forms at a single site
while the other dimer exhibits equal energy partition over its two sites. Finally, we study the formation of
localized structure on an extended DNLS lattice chain. In particular we explore the stability of the so-called
even-parity and odd-parity localized modes, respectively, and explain their different stability properties by
means of phase-space dynamics. The global instability of the even-parity mode is shown. For the excited
even-parity mode a symmetry-breaking perturbation of the pattern leads to an intrinsic collapse of the even-
parity mode to the odd-parity one. The latter remains stable with respect to symmetry-breaking perturbations.
In this way we demonstrate that the favored stable localized states for the DNLS lattice chain correspond to
one-site localized excitations.@S1063-651X~97!09108-3#

PACS number~s!: 63.20.Pw, 03.40.Kf, 63.20.Ry
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I. INTRODUCTION

In this paper we study the energy transfer on a nonlin
one-dimensional lattice described by the discrete nonlin
Schrödinger ~DNLS! equation

i
dcn

dt
5gucnu2cn1V~cn111cn21!, ~1!

where thecn are complex amplitudes at siten, g is the local
nonlinearity parameter, andV is the dispersion paramete
determining the linear coupling between the sites. Equa
~1! is also known as the discrete self-trapping~DST! system
and presents a set of coupled nonlinear classical oscilla
introduced by Eilbeck, Lomdahl, and Scott@1# as a model to
describe the nonlinear vibrational dynamics in small po
atomic aggregates. The DST system can also be applie
model the self-trapping phenomena in chemical, conden
matter, and optical systems@2#. Another motivation for DST
studies was to investigate the self-trapping of vibrational
ergy in larger systems modeling globular protein chains
crystalline acetanilide@3,4#.

Equation~1! arises furthermore as a discretization of t
continuum nonlinear Schro¨dinger~NLS! equation. The latter
is completely integrable@5,6# and possesses soliton solutio
that play an important role in a large number of physical a
mathematical problems. However, the application of c
tinuum equations disregarding the inherent discrete lat
structure of the system is often too idealized and gives
propriate results only if the spatial extension of the nonlin
wave is much larger than the lattice spacing so that
cretized equations provide suitable descriptions. Unfo
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nately, there are only a few examples of exactly solva
discrete lattices known, such as the Toda lattice@7# and the
Ablowitz-Ladik lattice @8#, and most nonlinear lattice sys
tems are nonintegrable. In fact, numerical studies of the
namics of the discrete version of the NLS equation in
form of the DNLS equation~1! exhibit nonintegrability~see,
e.g., @9,10#!. Hence, in this case the discreteness not o
breaks the continuous translational symmetry, but it destr
at the same time the integrability. The question is then: W
becomes of the exact soliton solutions of the integrable N
equation under the influence of discreteness effects? Fo
DNLS equation the existence of a localized state with f
quency lying below the linear phonon band was establis
@11,12#. This solitarylike state reduces to a one-soliton so
tion in the continuum NLS equation. However, in the DNL
equation a moving localized state experiences dispersion
eventually decays@10,11#. Nevertheless, the lack of integra
bility in the DNLS equation does not necessarily lead to
absence of~standing! localized states at all. It is rather so th
large amplitude solitarylike standing excitations in nonin
grable systems appear as well@13# and modulational insta-
bility generates a possible mechanism for the intrinsic c
lapse to such very localized self-trapped states@14,15#.

Recently in studies of nonlinear Hamiltonian lattices the
has arisen interest in breather solutions, which are tim
oscillating solutions whose amplitudes decay exponenti
in space@16–29#. The DNLS equation represents such a no
linear network that can be cast in a Hamiltonian framewo
The Hamiltonian is determined by

H5
g

2(n
ucnu41V(

n
~cn11* cn1cn11cn* ! ~2!
3101 © 1997 The American Physical Society
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3102 56D. HENNIG
and the equations of motion are obtained throu
idcn /dt5]H/]cn* .

For other one-dimensional nonlinear Hamiltonian lattic
such as a chain of particles interacting through harmonic
~quartic! anharmonic potentials, basically two different typ
of intrinsic localized breathing modesun(t)5fncos(vt)
have been observed: These are the so-called even-parity
odd-parity modes, respectively. The odd-parity mode w
proposed by Sievers and Takeno@17#. Its spatial amplitudes
fn follow the approximate excitation pattern o
( . . . ↓↑↓ . . . ). Theexcitation is localized on only three ad
jacent lattice sites@17#. The dots stand for vanishingly sma
amplitudes of the lattice oscillators apart from the three-
excitation peak. Page detected the even-parity mode
spatial pattern ( . . .↑↓↑↓ . . . ) where effectively four sites
are involved@18#. The odd-parity mode is centered at a la
tice site whereas the even-parity mode is centered betw
two lattice sites. It was shown that the odd-parity mode
unstable with respect to perturbations, whereas the e
parity mode sustains perturbations@30#. Therefore, an inter-
esting question arises, namely, whether one finds these t
of localized breathing modes in the DNLS equation as w
and if so what stability properties do they have then? T
present paper is aimed at offering an answer to these q
tions in investigating the phase-space dynamics.

To study the breatherlike solutions of the DNLS equat
with emphasis on their formation process and stability iss
we proceed in the following way: First we use a ‘‘trunc
tion’’ argument permitting us to restrict the dynamical stu
ies to only a finite segment of the~infinitely! extended lat-
tice. The truncation is based on the assumption
exponential localization of the major part of the lattice e
ergy on a few lattice elements. Due to the exponential de
of the excitation amplitudes with increasing distance fro
the highly excited lattice segment those oscillators su
ciently far away from it perform only negligible smal
amplitude oscillations not contributing significantly to th
lattice energy. Therefore, we are justified in truncating
lattice at a certain lattice point and disregard the dynamic
all oscillators beyond that point. The appropriate length
the truncated chain depends of course on the degree o
exponential localization. Led by the numerical findings f
the localized modes of earlier works@21,31,32#, a truncation
to a four-element segment suffices. For instance, Ace
et al. showed that the preferred stable stationary states o
DNLS equation are supported by excitation patterns w
energy in only a few lattice sites@31,32#. They also showed
that very confined localized states virtually do not inter
with their adjacent sites. As we will demonstrate in the fi
part of the paper the four-mode approximation will give
valuable information about what type of lasting stable loc
ized solution we can expect to find for the DNLS equation
all. Local phase-space approaches were successfully ap
to the dynamics of Fermi-Pasta-Ulam chains as well as n
linear Klein-Gordon chains in@22# and to weakly coupled
rotators in@33#. In Sec. II we give a rigorous justification o
the truncation of a finite segment supporting periodic mot
from the full lattice in the light of classical perturbatio
theory. The remaining part of the paper is then organized
follows. In Sec. III we study a DNLS tetramer. Using
symmetry-reduction method, we reduce the dynamical pr
h
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lem to a three degree of freedom~DOF! Hamiltonian system.
We show that for certain initial conditions the tetramer d
namics can be solved exactly. In Sec. IV the energy mig
tion between the weakly coupled dimers manifested by
fusion of an action variable inside layers of coupl
resonances in the underlying phase space is analyzed.
tion V is devoted to an investigation of the stability issue
two kinds of localized DNLS modes, namely, the odd-par
mode and the even-parity mode. Making use of a lo
phase-space approach, we interpret the stability propertie
the tetramer and trimer segments in the context of locali
modes on segments embedded in extended chains. We
onstrate the global instability of the even-parity mode w
respect to symmetry-breaking perturbations. Moreover,
show that under perturbation the even-parity mode collap
to the odd-parity one. Finally, in Sec. VI we give a summa

II. DECOUPLING OF A RESONANT SEGMENT

The aim of the present section is to show how a fin
number of neighboring rotators with motion near resonan
can be decoupled from the whole DNLS lattice of weak
coupled rotators. The perturbation method used here wa
troduced by Benettinet al. in @33,34#. These authors found
for a chain of weakly coupled rotators~a simpler model than
the DNLS chain! that if the initial conditions of the system
are such that some of the rotators are in resonance with
neighbors, then the motion of those rotators has very li
effect on the remainder of the system. In other words,
short-range interactions of the resonant part are localize
those regions where the initial conditions are resona
whereas the nonresonant interaction part is very sm
Hence all the observed dynamics have local character an
@34# some sort of local chaos as well as local ordered
gimes were observed in the resonant regions. In the pre
study we deal with the case of an arbitrarily large lattice
length 1<n<N and perform the perturbative computatio
to first order ine.

In classical first-order perturbation theory one searc
for a canonical transformation from the original action-ang
variables (J,u) to new ones (J̄ , ū ) such that the original
Hamiltonian H5H0(J)1eH1(J,u) is transformed to a
Hamiltonian where the angle variables have been elimina
up to O(e), i.e.,

H ~1!~ J̄ , ū !5H0
~1!~ J̄ !1e2H1

~1!~ J̄ , ū !. ~3!

Substituting cn5AJn exp(2iun), the DNLS system~2! is
brought into the form

H5
g

2(n
Jn

21e2V(
n

AJnJn21 cos~un2un21!

[H0~J!1eH1~J,u!. ~4!

For a perturbational treatment we consider small coupli
V, which we make explicit by introducing the paramet
0,e!1 in front of the coupling terms. Physically, a smallV
means, for quasiparticles along molecular chains~e.g., in the
Holstein model! a small intersite transfer matrix elemen
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In the studies of molecular aggregates the insertion of sp
molecules increases the intersite distances and lowers
excitonic transfer matrix elements~see, e.g.,@35,36#! and
thus it is justified to regard the couplings as weak. Furth
more, for a large class of organic systems, such as for
mide and dichloromethane, as well as biological macrom
ecules and crystalline acetanilide as a model ofa-helix
protein the intermolecular couplingV is small, typically of
the order of 8–14 cm21 compared to the local excitatio
energy carried by the molecular units, which is in the ran
between 1000 and 2000 cm21 @37#.

Finally, also certain electrical lattices built up from
coupled cells of nonlinear circuits can be modeled by
DNLS equation@28#. Neighboring cells are bridged via se
ries of linear conductances that can be assigned such tha
intercell couplingV becomes small.

In the following we apply the Lie method~see, e.g.,@38#!
to eliminate the angle variables at first order in perturbat
theory. To this end one determines a generating func
S5eh of a canonical transformation such that the n
Hamiltonian SH5exp@eLh# takes the form H→H0

(1)

1e2H1
(1)1••• andLHf 5$H, f % is determined via the Pois

son bracket. One obtains exp@eLh#(H01eH1)
5H01e(LhH01H1)1O(e2). With the relation LhH0
52LH0

h one arrives finally at the equationLH0
h5H1 for

the unknown functionh. Using Eq.~4! one finds

h~J,u!52V(
n

AJnJn21

Jn2Jn21
sin~un2un21!. ~5!

Finally, we discuss the definition of the domains of the c
nonical transformationS5eh. The generating functionh is
defined outside the resonant planes ofJn2Jn2150 and the
condition of nonresonance is fulfilled fo
uJn2Jn21u.4AeVP. We use thatJn<AP, whereP5(nJn
is a conserved quantity.

On the other hand, if on a certain segment of the lattice
rotators the nonresonance conditions cannot be satisfied
is, if uJn2Jn21u,4AeVP for nP@N2

res ,N1
res# and

1,N6
res,N, then one can still perform a canonical transfo

mationS to eliminate the angle variables on all lattice poin
contained in the intervalsnP@1,N2

res21#ø@N1
res11,N#.

The new Hamiltonian then reads

H0
~1!5

g

2(
n51

N

Jn
21e2V (

n5N2
res

N1
res

AJnJn21 cos~un2un21!

1O~e2!. ~6!

In this way one decouples a resonant segment of len
Ñ5N1

res2N2
res from the rest of the lattice chain and the e

ergy should stay at this truncated segment at least up to t
of order 1/e. In the next section we regard the DNLS te
ramer ofÑ54 as the truncated segment.

III. THE DNLS TETRAMER

In the present section we study the DNLS tetramer. T
aim of such a study is twofold. The tetramer in itself
er
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interesting with respect to applications, e.g., to energy tra
fer in molecular aggregates as well as to four-mode coup
optical waveguides.

First, the tetramer can be viewed as a finite segment
bedded in an extended chain. The tetramer study serves
as a truncated four-mode description of the infinite latt
dynamics. In particular, there is the relation to the eve
parity localized mode. This strongly localized mode involv
only four adjacent particles~oscillators! of the chain and the
rest of the chain is literally at rest and hence can be discar
@13#. It has been shown above rigorously that finite eleme
carrying resonant motion can be decoupled from the rem
der of the chain. We will see that localized tetramer mod
can actually be associated with resonances. The questio
then: What are the stable localized modes provided by
tetramer and do they persist as strongly localized mode
the extended DNLS chain?

Second, the four-element DNLS segment~tetramer! is the
shortest segment for which the dimensionality of the ph
space supports the existence of a type of dynamics for wh
the trajectories can wander freely in phase space known
as Arnold diffusion@39#. As a result of the study on the
DNLS energy exchange dynamics, the Arnold diffusion
crucial for driving the transition of the even-parity mode
the odd-parity one to create a stable localized mode~see Sec.
IV !.

A. Coupled dimers and symmetry reduction

We write the DNLS-tetramer Hamiltonian in terms of th
complex site amplitudes as

H5
1

2
g(

j 51

4

ucj u41V~c1* c21c2* c1!1V~c3* c41c4* c3!

1W~c2* c31c3* c2!. ~7!

We call the pair of lattice sites (1,2) thefirst dimer, while the
pair (3,4) constitutes thesecond dimer. Sometimes we refer
to them also as dimer 1 and 2, respectively. The choice
different couplingsV of the transfer on the dimers respe
tively between them viaW enables us two consider differen
situations dependent on the relative ratio ofV and W. For
example; in the case ofV@W one has two weakly bound
dimers. The opposite extreme case ofW@V is a dimer with
one oscillator weakly attached to either site of it.

The system obtained by settingW50 (V50) is inte-
grable since it decomposes into two integrable DNLS dim
~one dimer and two isolated oscillators!. Instead of explicitly
writing the equations of motion for the amplitudescj of the
system, in which, besides energy conservation, the n
P5( j 51

4 ucj u2 is a further conserved quantity, we first e
press the Hamiltonian~7! in a different form resulting from a
symplectic transformation of the dimer amplitudes to tw
pairs of canonically conjugate variables (pn ,fn) and
(Nn ,bn), with n51,2:

c1
~n!5ANn1pn

2
expF2 i S fn1bn

2 D G ,
c2

~n!5ANn2pn

2
expF i S fn2bn

2 D G . ~8!
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The momentum variablesp1,2 are equal to the occupatio
differences between the two sites on each dimer,
pn5uc1

(n)u22uc2
(n)u2. The auxiliary action variablesNn are

given by Nn5uc1
(n)u21uc2

(n)u2. Obviously, they specify the
amount of P contained in each of the dimers, wit
P5N11N2.

It is convenient to rescale the time according to 2Vt→ t̃ ,
which is equivalent to a measurement of the energy in u
of 2V. Thereby we divide the Hamiltonian~energy! by a
factor of 2V yielding the scaled parametersg/2V5 g̃ and
W/V5W̃. For the sake of simplicity of notation we omit th
tildes henceforth.

The Hamiltonian~7! expressed in these new variables b
comes

H5H1
01H2

01H1, ~9!

with the dimer parts

Hn
05

g

2
@Nn

21pn
2#1ANn

22pn
2 cosfn ~n51,2! ~10!

and the interaction part

H15WA~N12p1!~N21p2!cos@ 1
2 ~b12b2!2 1

2 ~f11f2!#.
~11!

A reduction of the dimensionality of the phase space co
sponding to the system of Hamiltonian~9! is possible by
applying the symmetry-reduction method@38#. Apparently,
the interaction Hamiltonian depends on the angle variab
bn (n51,2) only in their combinationb12b2. The corre-
sponding conserved quantity related to theS1 symmetry is
the integralP5N11N2. We therefore perform a canonica
transformation based on the generating function

F5
1

2
~b12b2!J1

1

2
~b11b2!P, ~12!

yielding

N15
]F

]b1
5

1

2
~P1J!, N25

]F

]b2
5

1

2
~P2J!, ~13!

u15
]F

]J
5

1

2
~b12b2!, u25

]F

]P
5

1

2
~b11b2!. ~14!

As a result we obtain the reduced three DOF Hamilton
expressed in the two dimer DOFspn51,2,fn51,2 and an ad-
ditional J-u oscillator describing the power~energy! ex-
change between them

H~p1 ,f1 ,p2 ,f2 ,J,u!

5
g

4
J21

g

2
p1

21A 1
4 ~P1J!22p1

2

3cos~f1!1
g

2
p2

21A 1
4 ~P2J!22p2

2

3cos~f2!1WA@ 1
2 ~P1J!2p1@ 1

2 ~P2J!1p2#
.,

ts

-

-

s

n

3cos@u2 1
2 ~f11f2!#. ~15!

We simplified the notation asu1→u and further dropped a
constant contribution from the Hamiltonian because it do
not affect the equations of motion.

The integrable equations of motion in the dimer variab
(pn[p,fn[f) for an isolated dimer (W50) are given by

ṗ52AN22p2 sinf, ḟ5gp2
p

AN22p2
cosf. ~16!

For Ng,1 the system~16! possesses two stable ellipt
fixed points located at (p,f)5(0,0) and (p,f)5(0,6p),
respectively. The corresponding symmetric and asymme
mode patterns are symbolically expressed as (↑,↑), respec-
tively (↑,↓). For Ng.1 a bifurcation takes place and th
elliptic point at the origin is converted into a hyperbolic fixe
point. The hyperbolic point is connected to itself by a pair
homoclinic orbits formed by its coinciding stable and u
stable manifolds. Inside each half of the figure-eight sepa
trix there are elliptic fixed points located at

pe
656AN221/g2, fe50, ~17!

which represent stationary self-trapped states. In the up
half plane the latter are assigned to the mode patterns~↑↑!,
which in the limit of Ng→` yields (↑ .). The elliptic-type
dynamical rotations around them correspond to one-sided
cillations of the occupation difference, i.e.,p(t).0
@p(t),0# in the upper@lower# part of the homoclinic struc-
ture. Finally, forNg.2 a further transition occurs where th
separatrix embraces also the pointsp56N,f50. As seen
from Eq.~17!, the limitsN→` and/org→` result in strong
self-trapping at one of the monomers, i.e.,p→6N. Figure 1
shows the homoclinic structure in thep-f phase plane.

B. Solvable configurations and nonlinear modes

There exist special configurations~dependent on the ini-
tial conditions! for which the DNLS tetramer can be inte
grated in closed form. Andersen and Kenkre@40# presented
some exact analytical solutions forN-site DNLS systems
with localized initial conditions and a class of more gene
but symmetric initial conditions. We emphasize that o
study differs from those of@40# since the initial conditions

FIG. 1. Phase plane of a DNLS dimer ofg51.6 showing the
homoclinic structure. The two self-trapped states inside the sep
trix are indicated.
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leading in our cases to completely solvable tetramer confi
rations are not included in the discussions in@40#. Moreover,
in addition to the symmetric couplings ofV5W we cover a
more general case allowing also asymmetry in the couplin
viz. VÞW.

We prove that for the mirror symmetric initial condition
p1(0)52p2(0), f1(0)52f2(0), andJ(0)50 as well as
u(0)50, the tetramer system can be solved exactly. We
fer to these solvable cases as asolvable tetramer configura
tion ~STC!. The system solutions are given by those for tw
isolated asymmetric dimers and p1(t)[2p2(t),
f1(t)[2f2(t), and N1(t)[N2(t)[N for all times. The
system can be solved regardless of the values for coup
strengthsV andW.

To show the validity of the above statement regarding
STC we introduce the following symplectic change of va
ables induced by the generating function:

F5
1

2
~f11f2!X1

1

2
~f12f2!Y, ~18!

relating the old and new variables as

X5p11p2 , F5
1

2
~f11f2!, ~19!

Y5p12p2 , V5
1

2
~f12f2!. ~20!

The Hamiltonian expressed in the new variables become

H5
g

4
~J21X21Y2!1A~P1J!22~X1Y!2 cos~F1V!

1A~P2J!22~X2Y!2 cos~F2V!

1
W

2
A~P2Y!22~J2X!2 cos~u2F!. ~21!

In order to show the validity of the STC we note that t
Hamiltonian~21! is invariant under simultaneous reflectio
according to

H~X,F,J,u;Y,V!5H~2X,2F,2J,2u;Y,V!. ~22!

Since the HamiltonianH is an even function in the argu
mentsu5(X,F,J,u) we obtain that

Ẋuu5052
]H

]FU
u50

50, Ḟuu505
]H

]XU
u50

50, ~23!

J̇uu5052
]H

]u U
u50

50, u̇uu505
]H

]J U
u50

50. ~24!

Therefore, the six-dimensional phase spa
M5(X,F,J,u,Y,V) spanned by the dynamical variable
decomposes intoM5MY,V %Mu , MY,VPR13T1, and
MuPR23T2, respectively. The subspace Mu
5(X0 ,F0 ,J0 ,u0) contracts to the point (0,0,0,0). The int
grable dynamics takes actually place on the two-dimensio
subspaceMY,V5(Y,V)PR13T1.
u-

s,

-

g

e

e

al

In the case of the STC the Hamiltonia
H5H(Y,V;u50) reads

HY,V5
g

4
Y212AP22Y2cos~V!1

W

2
~P2Y!. ~25!

This Hamiltonian describes an asymmetric DNLS dimer s
tem, the solution of which can be expressed via Jacobian
Weierstrassian elliptic functions@41–44#.

In the context of the present study, which is to gain
sight into the features of localized DNLS modes, we foc
interest on tetramer excitations belonging to station
STC’s. The first situation arises from an ensemble of t
dimer modes related to the stable elliptic point
(p,f)5~0,6p! yielding the tetramer pattern~↑,↓,↓,↑!. This
mode realizes the global minimum of the energy. Therefo
the Hamiltonian can be used as a Lyapunov function to
tablish its stability. Regarding the tetramer as embedded
an extended chain, the stability of the antiphase tetra
configuration means that there exist no staggered local
solutions, which is in contrast to the findings of@13,12#. But
of more interest are tetramer modes built up from station
dimer states associated with stationary solutions from
interior of the homoclinic structure or the hyperbolic equili
rium itself ~see Fig. 1!. With respect to such solutions w
distinguish three tetramer mode patterns that are class
according to the superposition of their different stationa
dimer states. First, there is the amplitude pattern of~↑↑↑↑!.
In the limit of Ng→` the mode becomes (↑ . .↑ ) and we
call it the outer local tetramer mode~OLTM!. Second, we
have ~↑↑↑↑! going for Ng→` to the pattern (.↑↑ .), re-
ferred to asinner local tetramer mode~ILTM !. Finally, there
remains the case of equipartition of the tetramer energy, v
the pattern (↑↑↑↑). In the next subsection we are going
show that a stationary STC may become unstable with
spect to any symmetry-breaking perturbation.

C. Symmetry-breaking perturbations and resonance layers

We show that symmetry-breaking perturbations of t
STC’s can lead to instability in the tetramer dynamics.
symmetry-breaking perturbations we define deviations fr
the STC such thatuÞ0, and they are measured by absolu
values of the two pairs of variables (uXu,uFu) and (uJu,uuu).
For initial conditions leading to a STC or being close to it t
motion is associated with a strong coupling resonance de
mined by

u̇2~ḟ11ḟ2!/25
1

2
g~p11p22J!

1
1

4

P1J12p1

A1

4
~P1J!22p1

2

cos~f1!

2
1

4

P2J22p2

A1

4
~P2J!22p2

2

cos~f2!50. ~26!
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Note that for any STC for which (J,u)5(0,0) and
p152p2 ,f152f2, the resonance condition~26! is exactly
fulfilled. A stability analysis reveals the unstable characte
the stationary point (J,u)5(0,0) in theJ-u plane. The sepa
ratrix assigned to this unstable stationary point develop
stochastic layer due to the nonintegrability of the coup
system. In Fig. 2 we show the separatrix corresponding
the resonance~26! obtained from a numerical integration o
the weakly coupled DNLS dimer-dimer system of Eq.~15!
with W50.004 projected onto theJ-u phase plane by a time
periodic map. The integration time interval wa
0<t<10.000 and after each time step oft550 a point was
set in theJ-u phase plane. The separatrix exhibits a th
stochastic layer. Since the separatrix width determines
maximal amount of energy to be transported from one dim
to the other, we call theJ-u separatrix themaster separatrix.

Thus perturbations of the STC are connected with dyna
ics inside the resonance layer and the actionJ experiences a
drift with velocity according to

J̇52~]H1/]u!

5WA@ 1
2 ~P1J!2p1#@ 1

2 ~P2J!1p2#

3sin@u2 1
2 ~f11f2!#. ~27!

In turn this drift in J changes the energies of th
two dimer DOF’s due to the dependenceE1,2

0 5gp1,2
2

1A(P6J)2/42p1,2
2 cos(f1,2). Therefore, the orbits on the lo

cal dimer planes will drift away from their initial positions
The drift in the dimer DOF’s initiated and forced by th
chaotic layer diffusion of theJ action reflects the features o
Arnold diffusion @38,45–47#.

Concerning the drift motion of action variables insid
resonance layers, we exploit now an argumentation
Nekhoroshev@48,49,47#. According to Nekhoroshev, a fas
evolution of the actionJ ~with drift velocity of the order of
the couplingW) is possible only for resonances and tak
place only in directions determined by the resonance vect
If the unperturbed Hamiltonian is such that the mat
]2H0 /]I 2 with I 5(p1 ,p2 ,J) is positive ~condition of con-
vexity!, then it is guaranteed that the evolution extends i
direction leading out of the resonance surface. Hence

FIG. 2. Master separatrix in theJ-u plane for the coupled dimer
dimer dynamics ofg51.6, P52, andW50.004. The initial con-
ditions arep1520.780 622 47,p250.780 622 79,f15f250, and
J5u50.
f
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to
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a
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resonance gets destroyed and the drift motion of the ac
appears only for short times so that an exponential bound
the velocity of the action diffusion results@48#. On the other
hand, for Hamiltonians for which the convexity is not give
one finds on the resonance surface a curve whose tange
any point lies in the plane spanned by the resonance ve
An action drift with velocityW along this curve suffices tha
the action variableJ shows significant deviations from it
initial value already in time intervals of order 1/W @48,49#.

With respect to the application of the above argumen
tion to the drift of the action in the stochasticJ-u layer it is
now illustrative to inspect the matrix]2H0 /]I 2, which is
given by

S g 0 D1

0 g D2

D1 D2 g
D , ~28!

where

D1[
]2H0

]p1]J
5

1

4

p1cos~f1!~P1J!

@ 1
4 ~P1J!22p1

2#3/2
, ~29!

D2[
]2H0

]p2]J
52

1

4

p2cos~f2!~P2J!

@ 1
4 ~P2J!22p2

2#3/2
. ~30!

For a comparison of the stability properties of the OLT
and the ILTM we recall that for both modes their two corr
sponding dimer constituents perform oscillations in the in
rior of the lobes of their homoclinic structures~see Fig. 1!. In
both cases the angles are locked in the intervaluf1,2u<p/2
and likewise are the signs of the momenta fixed. Concern
the OLTM characterized byp1.0,p2,0, the matrix
]2H0 /]J2 is positive, while for the ILTM ofp1,0,p2.0 it
is not. Due to Nekhoroshev we expect for the OLTM only
short time diffusion of the actionJ, whereas the ILTM may
maintain the resonance condition over a long time inter
resulting in pronounced action diffusion. Furthermore, fro
Eq. ~27! we see immediately that the drift velocityJ̇ for an
ILTM is larger than for an OLTM.

The findings of the current section lead us to draw
conclusion that the dynamics for initial conditions close
the STC’s that is manifested by near-separatrixJ-u motion
may become unstable due to diffusion inside the resona
layer. On the other hand, for orbits that remain sufficien
far from the separatrix the evolution is regular. Figure
shows the dimer occupation differencesp1,2(t) as well as the
power exchange variableJ(t) for the case of initial condi-
tions sufficiently apart from the unstable point
(J,u)5(0,0). Indeed the trajectories exhibit the expect
regular behavior. The next section deals with the tetram
dynamics withJ-u initial conditions contained in the sto
chastic layer around the separatrix for which irregular mot
is found.

IV. ENERGY EXCHANGE IN THE COUPLED
DIMER-DIMER DYNAMICS

In this section we study the energy exchange dynam
between the two dimeric subunits of the tetramer caused
Arnold diffusion. In Ref.@39# we proved with the help of the
Melnikov method the nonintegrability of the DNLS tetram
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56 3107ENERGY EXCHANGE DYNAMICS OF THE DISCRETE . . .
through the existence of chaotic dynamics supporting
presence of Arnold diffusion. We are interested in tetram
excitations of equal distribution of the conserved tetram
energy between both dimers, i.e.,N1(0)5N2(0) as well as
E1

0(0)5E2
0(0). Furthermore, the amplitudes at the oppos

sites of the two dimers being the two inner tetramer sites
initially close to a stationary self-trapped state. The situat
is described symbolically by the following stationary mo
patterns: on dimer 1~↑↑! and on dimer 2~↑↑!. To this end
we concentrate on initial excitations of the dimers accord
to p1(t)'2p2(t) with up1,2(t)2pe

7u!1 and f1(t)
'2f2(t), while uf1,2(t)u!1. We remark that these initia
conditions involve small deviations from the symmetry
the ILTM.

Note that for vanishing couplingW50 the decoupled
dimers are each for itself integrable. In particular, the se
rate dimer energies are both conserved and hence a
trapped state can never be left. However, when the
dimers become coupled energy migration between them
possible. There arises at least one interesting question t
answered namely, whether this initial excitation pattern
self-trapped amplitudes on the two dimers remains sta
under the dimer-dimer interaction or, if not, can there ex
any localized structure on the tetramer at all?

The coupled dynamics of the three DOF Hamiltoni
dimer-dimer system evolves in the six-dimensional ph
space on a five-dimensional energy manifold, which, ho
ever, as a whole, is difficult to visualize appropriately. Fo
geometrical illustration of the complex diffusion process
terms of the dynamics in phase space we invoke there
projections on the local phase spaces attributed to each s
DOF. These three local phase spaces are the two dimer p
planes parametrized in the correspondingpn-fn variables
(n51,2) and theJ-u phase plane. The local projectio
method enables us to monitor the actual dynamical stat
each subsystem. The sum of these three local pictures
tains the complete information about the coupled syste
dynamics. For example, the above-described initial con
tions are manifested as follows in the local subspaces: In
local dimer phase space of the first dimer, i.e., thep1-f1
variable, the initial conditions coincide with a stationary se

FIG. 3. Evolution of the dimer occupation differencesp1(t)
~lowest curve! and p2(t) ~upper curve! and the power difference
J(t) ~middle curve! for the initial conditions of p1520.78,
p250.78, J50.06, f15f250, and u50. The parameters ar
g51.6 andW50.01. The curves reveal regular dynamical beh
ior.
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trapped state in the lower half plane ofp1,0. For the second
dimer the initial condition is chosen as a point on a cur
encircling closely the elliptic fixed points in the upper ha
plane (p2.0) inside one-half of the corresponding loc
figure-eight separatrix. The initial equal distribution of th
energy among the dimers is represented in theJ-u plane by
the hyperbolic fixed point at (0,0).

In the following we describe the successive stages of
energy exchange dynamics of the coupled dimer-dimer s
tem by focusing on the typical dynamics observed in each
the local phase spaces. We start with theJ-u phase plane as
the local phase space describing the power~energy! balance
between the two dimers. The chaotic dynamics in the s
chastic layer around the master separatrix induces diffu
motion. Therefore, the stochastic layer of the master sep
trix guides the action diffusion. Apparently, the larger t
possibleJ5N12N2 excursion across the layer the more pr
nounced the dynamical changes of the local amounts of
dimer powersN1 and N2. When diffusing across theJ-u
stochastic layer away from the initial point (0,0) into th
upper~lower! half-plane ofJ.0 (J,0) the local energy of
the first dimer increases~diminishes!, while that of the sec-
ond dimer diminishes~increases!. In turn these directed
changes in the local dimer energies are reflected on the
sociated dimer phase planes by diffusive motion of the dim
variables (pn ,fn), n51,2. The diffusive motion in the dime
subplanes initiated and forced by the chaotic diffusion in
stochastic layer in theJ-u plane is characteristic for Arnold
diffusion @45,38#.

In Fig. 4 we illustrate the dynamics of the energy e
change between the two dimers for a coupling stren
W50.01. Projections on the individual subplanes we
achieved by a time-periodic map, that is, after a time step
t550 the dynamical state of the subsystem was set as a p
in the corresponding plane. Figure 4~a! shows the corre-
spondingJ-u phase plane exhibiting a chaotic layer arou
the destroyed separatrix in which the actionJ diffuses. The
time evolution of the actionJ(t) is depicted in Fig. 4~b!.
Clearly visible is the pronounced diffusive growth fro
J50 to J.0.5 taking place in the time interval o
0<t,4800. The exclusively positiveJ amplitude performs
‘‘everlasting’’ small oscillations around a mean value
J.0.5 to be seen on the correspondingJ-u plane as a hori-
zontal motion@Fig. 4~c!#. This means that the major amou
of power N1.5/4 is then contained in the first dime
whereas the rest of power~energy! N25P2N1.3/4 re-
mains in the second dimer. The process of directed ene
transfer from dimer 1 into dimer 2 becomes transparen
the p1,2-f1,2 planes that we superimposed onto one plane
Fig. 4~d!. We show the initial stage of the dynamics up to
time of t54000 when the energy migration takes place.
terestingly, the directed redistribution of major parts of t
conserved tetramer energy into one of its dimer compone
causes enhanced self-trapping of the energy on the co
sponding right monomer of the first dimer to be seen in Fi
4~e! and 4~f!, where we plotted the dimer occupation diffe
encesp1(t) andp2(t), respectively. While on dimer 1 a self-
trapped state has been formed with strong localization of
local energy at its right dimer site, the dynamics on dime
is characterized by randomization of the energy over its t
monomers@see Fig. 4~f!#. The latter effect of energy equi

-



in Fig. 1,

uilibrium

3108 56D. HENNIG
FIG. 4. Dynamics of the energy exchange between two coupled DNLS dimers. The parameters and initial conditions are as
except for the coupling strength ofW50.01. ~a! The J-u plane fort,4000. The separatrix exhibits a chaotic layer.~b! Time evolution of
J(t). ~c! The J-u plane for t.4000. ~d! The superimposed phase planes of dimers 1 and 2, respectively, for 0<t<4000. ~e! Dimer
occupation differencep1(t). ~f! Dimer occupation differencep2(t). ~g! The evolution of the dimer energiesE1,2

0 (t) illustrating the directed
flow of energy from dimer 2 into dimer 1.~h! The superimposed phase planes of dimers 1 and 2, respectively. Fort.4800 the final stage
of the dynamics of dimer 2 takes place as chaotic motion in the stochastic layer of the separatrix, whereas for dimer 1 the elliptic eq
in the lower half plane is encircled.
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56 3109ENERGY EXCHANGE DYNAMICS OF THE DISCRETE . . .
partition is the result of the chaotic movement ofp2(t)
around the value of zero due to nearby separatrix motion
the p2-f2 phase plane. The time evolution of the dimer e
ergiesE1,2

0 (t) in Fig. 4~g! shows the migration of the energ
from the second dimer into the first dimer. In Fig. 4~h! we
illustrate on the two superimposed dimer subplanes the fi
stage of the dynamics fort.4000, that is, after the energ
migration from dimer 2 to dimer 1 has been finished. In F
4~h! one clearly sees that the localized single-site stat
characterized by small-amplitude oscillations around an
liptic fixed point in thep1-f1 subplane.

We emphasize that in the final stage the dynamics in
p2-f2 subsystem takes place as diffusion inside a thick s
chastic layer. The thick stochastic layers form the domin
part of the Arnold web containing the thin layers of ma
other resonances too. As a hallmark of Arnold diffusion t
dynamics preferably takes place in thick stochastic lay
@45,38#. In this way the thick layerp2-f2 motion in the
separatrix of the unstable equilibrium is maintained and th
will no pathway back leding to even the vicinity of the sta
ing point at the self-trapped state belonging to the stablep1,2-
f1,2 equilibria. Consequently, the coupled dimer-dimer m
tion will hardly return to the initial state of energy equipa
tition and hence the energy transfer from one dimer into
other is irreversible. In conclusion, a long-lived single-sit
localized state on the first dimer is observed storing the
jority of the energy in it, whereas on the second dimer
remaining little energy is randomized over its two sites.

To summarize, we have seen that in the case of a we
coupled dimer-dimer system the formation of a specific
calized mode excitation pattern with energy localization a
single site is possible. This localized state has emerged f
a situation of initial equal energy distribution among the tw
dimer subunits with an amplitude pattern close to an in
local tetramer mode, that is,~↑↑↑↑!. The directed energy
migration results eventually in a single-site self-trapped s
on only one of the dimers according to the mode patt
~↑↑↑↑!. This long-lived and stable localized state shows
typical features of a stationary solitarylike excitation or i
trinsically localized mode.

We investigated also the dynamics corresponding to
tial conditions close to the outer local tetramer mode, v
~↑↑↑↑!. It turns out that it is robust under weak symmetr
breaking perturbations maintaining its excitation pattern. T
findings are summarized in Fig. 5.

V. STABILITY PROPERTIES OF THE EVEN- AND
ODD-PARITY LOCALIZED MODES

In this section we consider localized excitation patterns
an extended DNLS lattice chain. When we view the tetram
system as a four-site element embedded in a longer~infinite!
lattice chain we can exploit the results of the abov
performed tetramer stability discussions for interpret
them in the context of strongly localized modes on the
tended chain. In particular we see that the mirror-symme
tetramer initial conditions close to an ILTM resemble t
excitation pattern of the central four-site element for t
strongly localized even-parity mode on an extended DN
chain, viz., ( . . .↑↑↑↑ . . . ).

In adopting the results reported in the preceding sec
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for the localized structure formation on the tetramer to e
tended lattice dynamics we anticipate that the pertur
even-parity mode collapses to the odd-parity mode cha
terized by the stationary mode pattern ( . . .↑↑↑ . . . ). This
prediction was confirmed in our numerical studies. Figure
shows the evolution of the amplitude profiles for a DNL
chain with open boundaries. We excited initially two adj
cent lattice sites corresponding to a very strong localiz
even-parity mode. A symmetry-breaking perturbation w
imposed through small difference in the two excited amp
tudes of the order of 1025. After a short transient time o
phonon emission from the excitation peak into extend
parts of the lattice one clearly sees the two-site excitat
pattern collapsing to a single-site state representing the
tionary odd-parity mode.

Our result is in qualitative agreement with the findings
Laedke, Spatschek, and Turitsyn@50# in their study of a
DNLS with a tunable power nonlinearity. They showed th
unstable discrete solitons centered between two lattice s
~even-parity modes! collapse eventually into more stable in
trinsically localized modes. For a nonlinearity power larg
than our cubic one this final state is a time-dependent lo

FIG. 5. Stability of the OLTM. The initial conditions are as i
Fig. 1, except for the sign change ofp1 to 0.780 622 47 andp2 to
20.780 624 79. The dimer-dimer coupling is taken asW50.1
which is 10 times larger than the one used for the ILTM of Fig.

FIG. 6. Amplitude profile on an extended DNLS chain illustra
ing the intrinsic collapse of the initially excited even-parity mode
the odd-parity one. The parameters areP58 and g5V51. The
initial difference in the amplitude of the two excited lattice sites
1025.
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3110 56D. HENNIG
ized mode corresponding to anoscillating two-soliton state
@50#. With the present study for cubic nonlinearities we de
onstrate that the fate of the perturbed even-parity mode i
collapse to astanding solitonlike state that is, howeve
nonoscillating. Kivshar and Campbell@13# argued that the
even-parity and odd-parity stationary DNLS modes can
viewed as two different states of the same localized state
at different fixed instants in time. In more detail, while mo
ing the localized state rigidly through the lattice it has
center at a certain time at a lattice site~odd-parity mode!,
whereas at another time it will be centered between two s
~even-parity mode!. From a comparison of the correspondin
mode energies one can also infer the stability properties.
odd-parity mode has lower energy than the even-parity o
Thus the latter shows an instability@13#. We underline that
our analysis goes beyond the one performed in@13# because
it is not restricted to a stationary analysis of DNLS mod
Moreover, we reveal in detail thedynamicalinstability of the
even-parity mode entailing an intrinsic dynamical collapse
the odd-parity mode.

Contrary to the even-parity mode, the odd-parity mo
remains stable with respect to symmetry perturbations
order to explain the stability of the odd-parity mode we c
invoke again a local phase-space picture. Since effectiv
only three lattice oscillators are involved in its excitatio
pattern the local phase space this time belongs to the ce
trimer segment truncated from the extended chain. The
fect excitation pattern of the odd-parity mode~↑↑↑! yields
integrable trimer motion. By means of a Poincare´ map it can
be shown that this stationary mode pattern is represente
an elliptic fixed point on the corresponding cross secti
Symmetry-breaking perturbations of the odd-parity mo
produce a stability island of the Poincare´ map for which
integrable quasiperiodic motion surrounds the elliptic fix
point. This offers an explanation for the robustness of
odd-parity mode with respect to perturbations in terms of
local trimer phase-space dynamics. In summary we see
unlike the even-parity mode, which even under small bre
ing of its symmetry is readily destroyed, the odd-parity mo
persists for a rather strong breaking of its symmetry patte

VI. SUMMARY

We have studied the energy transfer along a DNLS lat
chain. As a first step we showed that a resonant finite
ment can be decoupled from the lattice. In the first part of
paper a four-element segment, i.e., a DNLS tetramer,
investigated. We identified certain initial conditions f
which the tetramer system can be solved exactly. For
weakly coupled dimers the persistence of their station
dimer modes as tetramer modes was investigated. It
-
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shown that perturbations of the tetramer modes exhibit
self-trapped amplitudes at the two inner tetramer sites~inner
local tetramer modes! lead to unstable motion. The energ
migration along the tetramer was studied numerically. In p
ticular, imposing perturbations on the excited inner local t
ramer mode, chaotic dynamics inside resonance layers
found and diffusion of an action variable expressing the
ergy sharing between the dimers appeared. Due to the ac
diffusion, a directed and irreversible energy flow from o
dimer into the other takes place. As an interesting pheno
enon one observes finally the creation of a coherent struc
in the form of a large-amplitude state localized at a sin
site of the tetramer. This localized state is dynamica
stable. The tetramer results are applicable to the search
localized vibrational modes in molecular tetramer studi
but are also of interest in nonlinear optics when arrays
four coupled waveguides are considered.

In the second part of the paper we focused interest on
energy exchange dynamics along an extended DNLS ch
Attention was paid to the occurrence of localized station
modes, that is, the odd-parity and even-parity modes, res
tively. To relate the tetramer results obtained in the first p
of the paper to the studies of dynamics on the extended
tice we used that the main excitation pattern of the ev
parity mode on the extended lattice is localized at only fo
lattice elements and its shape resembles an inner local
ramer mode. Therefore, the tetramer studies can serve
four-element approximation of the extended lattice dyna
ics. Especially from the instability of the inner local tetram
mode, one can predict a decay of the even-parity mo
Moreover, the above-reported creation of the single-site
calized tetramer state corresponds on the extended lattic
the formation of the odd-parity mode. In the numerical stu
of the extended DNLS lattice we have observed indeed
intrinsic collapse of the initially excited even-parity mode
the odd-parity one. Thus we have been able to demons
that the most stable localized excitation of a DNLS chain
provided by a one-site breather. This result is of importan
for applications of the DNLS equation in describing arrays
nonlinear optical waveguides since it shows what type
excitation can be stored in the array in a reliable and sta
way. With regard to applications of DNLS modeling larg
molecular systems such as globular protein chains or crys
line acetanilide, our results show that self-trapping of vib
tional energy occurs preferably on only one subunit of
chain.
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